
Measurements.jl Documentation
Release 0.1.1

Mose’ Giordano

July 09, 2016

Contents

1 Introduction 1
1.1 Features List . 1

2 License 3
2.1 Installation . 3
2.2 Usage . 3
2.3 Examples . 5
2.4 How Can I Help? . 9
2.5 TODO . 9
2.6 Appendix: Technical Details . 10

i

ii

CHAPTER 1

Introduction

Measurements.jl is a Julia package that allows you to define numbers with uncertainties, perform calculations involving
them, and easily get the uncertainty of the result according to linear error propagation theory.

1.1 Features List

• Support for most mathematical operations available in Julia involving real and complex numbers. All existing
functions that accept AbstractFloat (and Complex{AbstractFloat}) arguments and internally use
already supported functions can in turn perform calculations involving numbers with uncertainties without being
redefined. This greatly enhances the power of Measurements.jl without effort for the users

• Functional correlation between variables is correctly handled, so 𝑥 − 𝑥 = 0 ± 0, 𝑥/𝑥 = 1 ± 0, tan(𝑥) =
sin(𝑥)/ cos(𝑥), etc...

• Support for arbitrary precision numbers with uncertainties (though this may not be very useful for quantities
that are intrinsically imprecise)

• Define arrays of measurements and perform calculations with them

• Propagate uncertainty for any function of real arguments (including functions based on C/Fortran calls), using
@uncertain macro

• Functions to get the derivative and the gradient of an expression with respect to one or more independent mea-
surements

• Functions to calculate standard score and weighted mean

• Easy way to attach the uncertainty to a number using ± sign

Further features are expected to come in the future, see the “How Can I Help?” section and the TODO list.

1

https://github.com/giordano/Measurements.jl
http://julialang.org/
https://en.wikipedia.org/wiki/Propagation_of_uncertainty
http://docs.julialang.org/en/stable/manual/integers-and-floating-point-numbers/#arbitrary-precision-arithmetic
http://docs.julialang.org/en/stable/manual/calling-c-and-fortran-code/
http://docs.julialang.org/en/stable/manual/metaprogramming/
https://en.wikipedia.org/wiki/Standard_score
https://en.wikipedia.org/wiki/Weighted_arithmetic_mean

Measurements.jl Documentation, Release 0.1.1

2 Chapter 1. Introduction

CHAPTER 2

License

The Measurements.jl package is licensed under the MIT “Expat” License. The original author is Mosè Giordano.

2.1 Installation

Measurements.jl is available for Julia 0.4 and later versions, and can be installed with Julia built-in package
manager. In a Julia session run the command

julia> Pkg.add("Measurements")

You may need to update your package list with Pkg.update() in order to get the latest version of
Measurements.jl.

2.2 Usage

After installing the package, you can start using it with

using Measurements

The module defines a new Measurement data type. Measurement objects can be created with the two following
constructors:

Measurement(value, uncertainty)

value ± uncertainty

where

• value is the nominal value of the measurement

• uncertainty is its uncertainty, assumed to be a standard deviation.

They are both subtype of AbstractFloat. Some keyboard layouts provide an easy way to type the ± sign, if your
does not, remember you can insert it in Julia REPL with \pm followed by TAB key. You can provide value and
uncertainty of any subtype of Real that can be converted to AbstractFloat. Thus, Measurement(42,
33//12) and pi ± 0.1 are valid.

Measurement(value) creates a Measurement object that doesn’t have uncertainty, like mathematical con-
stants. See below for further examples.

3

http://docs.julialang.org/en/stable/manual/packages/
http://docs.julialang.org/en/stable/manual/packages/
https://en.wikipedia.org/wiki/Standard_deviation

Measurements.jl Documentation, Release 0.1.1

Note: Every time you use one of the constructors above you define a new independent measurement. Instead, when
you perform mathematical operations involving Measurement objects you create a quantity that is not independent,
but rather depends on really independent measurements.

Most mathematical operations are instructed, by operator overloading, to accept Measurement type, and uncertainty
is calculated exactly using analityc expressions of functions’ derivatives.

In addition, it is possible to create a Complex measurement with complex(Measurement(a, b),
Measurement(c, d)).

Those interested in the technical details of the package, in order integrate the package in their workflow, can have a
look at the technical appendix.

Caution: The ± sign is a convenient symbol to define quantities with uncertainty, but can lead to unexpected
results if used in elaborate expressions involving many ±s. Use parantheses where appropriate to avoid confusion.
See for example the following cases:

7.5±1.2 + 3.9±0.9 # This is wrong!
=> 11.4 ± 1.2 ± 0.9 ± 0.0
(7.5±1.2) + (3.9±0.9) # This is correct
=> 11.4 ± 1.5

2.2.1 Correlation Between Variables

The fact that two or more measurements are correlated means that there is some sort of relationship beetween them.
In the context of measurements and error propagation theory, the term “correlation” is very broad and can indicate
different things. Among others, there may be some dependence between uncertainties of different measurements with
different values, or a dependence between the values of two measurements while their uncertainties are different.

Here, for correlation we mean the most simple case of functional relationship: if 𝑥 = 𝑥̄ ± 𝜎𝑥 is an independent
measurement, a quantity 𝑦 = 𝑓(𝑥) = 𝑦 ± 𝜎𝑦 that is function of 𝑥 is not like an independent measurement but is a
quantity that depends on 𝑥, so we say that 𝑦 is correlated with 𝑥. The package Measurements.jl is able to handle
this type of correlation when propagating the uncertainty for operations and functions taking two or more arguments.
As a result, 𝑥− 𝑥 = 0± 0 and 𝑥/𝑥 = 1± 0. If this correlation was not accounted for, you would always get non-zero
uncertainties even for these operations that have exact results. Two truly different measurements that only by chance
share the same nominal value and uncertainty are not treated as correlated.

2.2.2 Propagate Uncertainty for Arbitrary Functions

@uncertain f(x, ...)

Existing functions implemented exclusively in Julia that accept AbstractFloat arguments will work out-of-the-
box with Measurement objects as long as they internally use functions already supported by this package. However,
there are functions that take arguments that are specific subtypes of AbstractFloat, or are implemented in such a
way that does not play nicely with Measurement variables.

The package provides the @uncertain macro that overcomes this limitation and further extends the power of
Measurements.jl.

This macro allows you to propagate uncertainty in arbitrary functions, including those based on C/Fortran calls, that
accept any number of real arguments. The macro exploits derivative and gradient functions from Calculus
package in order to perform numerical differentiation.

4 Chapter 2. License

https://en.wikipedia.org/wiki/Operator_overloading
https://en.wikipedia.org/wiki/Correlation_and_dependence
http://docs.julialang.org/en/stable/manual/calling-c-and-fortran-code/
https://github.com/johnmyleswhite/Calculus.jl

Measurements.jl Documentation, Release 0.1.1

2.2.3 Derivative and Gradient

Measurements.derivative(y::Measurement, x::Measurement)

Measurements.gradient(y::Measurement, x::AbstractArray{Measurement})

In order to propagate the uncertainties, Measurements.jl keeps track of the total derivative of an expression with
respect to all independent measurements from which the expression comes. For this reason, the package provides two
convenient functions, Measurements.derivative and Measurements.gradient, to get the total deriva-
tive and the gradient of an expression with respect to independent measurements.

2.2.4 Standard Score

stdscore(measure::Measurement, expected_value::Real)→ standard_score

The stdscore function is available to calculate the standard score between a measurement and its expected value.

2.2.5 Weighted Average

weightedmean(iterable)→ weighted_mean

weightedmean function gives the weighted mean of a set of measurements using inverses of variances as weights.
Use mean for the simple arithmetic mean.

2.3 Examples

These are some basic examples of use of the package:

using Measurements
a = Measurement(4.5, 0.1)
=> 4.5 ± 0.1
b = 3.8 ± 0.4
=> 3.8 ± 0.4
2a + b
=> 12.8 ± 0.4472135954999579
a - 1.2b
=> -0.05999999999999961 ± 0.49030602688525043
l = Measurement(0.936, 1e-3);
T = 1.942 ± 4e-3;
P = 4pi^2*l/T^2
=> 9.797993213510699 ± 0.041697817535336676
c = Measurement(4)
=> 4.0 ± 0.0
a*c
=> 18.0 ± 0.4
sind(94 ± 1.2)
=> 0.9975640502598242 ± 0.0014609761696991563
x = 5.48 ± 0.67;
y = 9.36 ± 1.02;
log(2x^2 - 3.4y)
=> 3.3406260917568824 ± 0.5344198747546611
atan2(y, x)
=> 1.0411291003154137 ± 0.07141014208254456

2.3. Examples 5

https://en.wikipedia.org/wiki/Standard_score
https://en.wikipedia.org/wiki/Weighted_arithmetic_mean
https://en.wikipedia.org/wiki/Inverse-variance_weighting

Measurements.jl Documentation, Release 0.1.1

2.3.1 Correlation Between Variables

Here you can see examples of how functionally correlated variables are treated within the package:

x = 8.4 ± 0.7
x - x
=> 0.0 ± 0.0
x/x
=> 1.0 ± 0.0
x*x*x - x^3
=> 0.0 ± 0.0
sin(x)/cos(x) - tan(x)
=> -2.220446049250313e-16 ± 0.0
They are equal within numerical accuracy
y = -5.9 ± 0.2
beta(x, y) - gamma(x)*gamma(y)/gamma(x + y)
=> 0.0 ± 3.979039320256561e-14

You will get similar results for a variable that is a function of an already existing Measurement object:

u = 2x
(x + x) - u
=> 0.0 ± 0.0
u/2x
=> 1.0 ± 0.0
u^3 - 8x^3
=> 0.0 ± 0.0
cos(x)^2 - (1 + cos(u))/2
=> 0.0 ± 0.0

A variable that has the same nominal value and uncertainty as u above but is not functionally correlated with x will
give different outcomes:

Define a new measurement but with same nominal value
and uncertainty as u, so v is not correlated with x
v = 16.8 ± 1.4
(x + x) - v
=> 0.0 ± 1.979898987322333
v/2x
=> 1.0 ± 0.11785113019775792
v^3 - 8x^3
=> 0.0 ± 1676.4200705455657
cos(x)^2 - (1 + cos(v))/2
=> 0.0 ± 0.8786465354843539

2.3.2 @uncertain Macro

Macro @uncertain can be used to propagate uncertainty in arbitrary real or complex functions of real arguments,
including functions not natively supported by this package.

@uncertain (x -> complex(zeta(x), exp(eta(x)^2)))(2 ± 0.13)
=> (1.6449340668482273 ± 0.12188127308075564) + (1.9668868646839253 ± 0.042613944993428333)im
@uncertain log(9.4 ± 1.3, 58.8 ± 3.7)
=> 1.8182372640255153 ± 0.11568300475873611
log(9.4 ± 1.3, 58.8 ± 3.7)
=> 1.8182372640255153 ± 0.11568300475593848

6 Chapter 2. License

Measurements.jl Documentation, Release 0.1.1

You usually do not need to define a wrapping function before using it. In the case where you have to define a function,
like in the first line of previous examples, anonymous functions allow you to do it in a very concise way.

The macro works with functions calling C/Fortran functions as well. For example, Cuba.jl package performs numerical
integration by wrapping the C Cuba library. You can define a function to numerically compute with Cuba.jl the
integral defining the error function and pass it to @uncertain macro. Compare the result with that of the erf
function, natively supported in Measurements.jl package

using Cuba
cubaerf(x::Real) =

2x/sqrt(pi)*Cuhre((t, f) -> f[1] = exp(-abs2(t[1]*x)), 1, 1)[1][1]
@uncertain cubaerf(0.5 ± 0.01)
=> 0.5204998778130466 ± 0.008787825789336267
erf(0.5 ± 0.01)
=> 0.5204998778130465 ± 0.008787825789354449

Also here you can use an anonymous function instead of defining the cubaerf function, do it as an exercise.

Warning: The type of all the arguments provided must be Measurement. If one of the arguments is actually an
exact number (so without uncertainty), convert it to Measurement type:

atan2(10, 13.5 ± 0.8)
=> 0.6375487981386927 ± 0.028343666961913202
@uncertain atan2(10 ± 0, 13.5 ± 0.8)
=> 0.6375487981386927 ± 0.028343666962347438

In addition, the function must be differentiable in all its arguments. For example, the scaled first derivative of the
Airy Ai function airyx(1, 𝑧) = exp((2/3)𝑧

√
𝑧)Ai′(𝑧) is not differentiable in the first argument, not even the trick

of passing an exact measurement would work because the first argument must be an integer. You can easily work
around this limitation by wrapping the function in a single-argument function

@uncertain (x -> airyx(1, x))(4.8 ± 0.2)
=> -0.42300740589773583 ± 0.004083414330362105

2.3.3 Complex Measurements

Here are a few examples about uncertainty propagation of complex-valued measurements.

u = complex(32.7 ± 1.1, -3.1 ± 0.2)
v = complex(7.6 ± 0.9, 53.2 ± 3.4)
2u+v
=> (73.0 ± 2.3769728648009427) + (47.0 ± 3.4234485537247377)*im
sqrt(u*v)
=> (33.004702573592 ± 1.0831254428098636) + (25.997507418428984 ± 1.1082833691607152)*im
gamma(u/v)
=> (-0.25050193836584694 ± 0.011473098558745594) + (1.2079738483289788 ± 0.133606565257322)*im

You can also verify the Euler’s formula

cis(u)
=> (6.27781144696534 ± 23.454542573739754) + (21.291738410228678 ± 8.112997844397572)*im
cos(u) + sin(u)*im
=> (6.277811446965339 ± 23.454542573739754) + (21.291738410228678 ± 8.112997844397572)im

2.3. Examples 7

http://docs.julialang.org/en/stable/manual/functions/#anonymous-functions
https://github.com/giordano/Cuba.jl
http://www.feynarts.de/cuba/
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Euler%27s_formula

Measurements.jl Documentation, Release 0.1.1

2.3.4 Arbitrary Precision Calculations

Arbitrary precision calculations involving quantities that are intrinsically imprecise may not be very useful, but Julia
natively supports this type of arithmetic and so Measurements.jl does. You only have to create Measurement
objects with nominal value and/or uncertainty of type BigFloat (or BigInt as well, actually):

a = BigInt(3) ± 0.01
b = 4 ± 0.03
hypot(a, b)
=> 5.00 ± 2.473863375370596246756154793364399326509001412701084709723336101627452857843757e-02
log(2a)^b
=> 1.030668097314957384421465902631648727333270687596715387736946157489404400228445e+01 ± 1.959580475953079233643030915452927748488408893913287402297342303952280925878254e-01

2.3.5 Arrays of Measurements

You can create arrays of Measurement objects and perform mathematical operations on them in the most natural
way possible:

A = [1.03 ± 0.14, 2.88 ± 0.35, 5.46 ± 0.97]
B = [0.92 ± 0.11, 3.14 ± 0.42, 4.67 ± 0.58]
exp(sqrt(B)) - log(A)
=> 3-element Array{Measurements.Measurement{Float64},1}:
2.5799612193837493 ± 0.20215123893809778
4.824843081566397 ± 0.7076631767039828
6.982522998771525 ± 1.178287422979362
cos(A).^2 + sin(A).^2
3-element Array{Measurements.Measurement{Float64},1}:
1.0 ± 0.0
1.0 ± 0.0
1.0 ± 0.0
sum(A)
=> 9.370000000000001 ± 1.0406728592598156
mean(B - A)
=> -0.21333333333333326 ± 0.42267665603337445

2.3.6 Derivative and Gradient

In order to propagate the uncertainties, Measurements.jl keeps track of the total derivative of an expression with
respect to all independent measurements from which the expression comes. The package provides two convenient
functions, Measurements.derivative and Measurements.gradient, that return the total derivative and
the gradient of an expression with respect to independent measurements.

x = 98.1 ± 12.7
y = 105.4 ± 25.6
z = 78.3 ± 14.1
Measurements.derivative(2x - 4y, x)
=> 2.0
Measurements.derivative(2x - 4y, y)
=> -4.0
Measurements.gradient(2x - 4y, [x, y, z])
=> 3-element Array{Float64,1}:
2.0
-4.0
0.0 # The expression does not depend on z

8 Chapter 2. License

http://docs.julialang.org/en/stable/manual/integers-and-floating-point-numbers/#arbitrary-precision-arithmetic

Measurements.jl Documentation, Release 0.1.1

Tip: The Measurements.gradient function is useful in order to discover which variable contributes most to the
total uncertainty of a given expression, if you want to minimize it. This can be calculated as the Hadamard (element-
wise) product between the gradient of the expression with respect to the set of variables and the vector of uncertainties
of the same variables in the same order. For example:

w = y^(3//4)*log(y) + 3x - cos(y/x)
=> 447.0410543780643 ± 52.41813324207829
(Measurements.gradient(w, [x, y]).*[a.err for a in (x,y)]).^2
=> 2-element Array{Any,1}:
1442.31
1305.36

In this case, the x variable contributes most to the uncertainty of w. In addition, note that the Euclidean norm of the
Hadamard product above is exactly the total uncertainty of the expression:

vecnorm(Measurements.gradient(w, [x, y]).*[a.err for a in (x,y)])
=> 52.41813324207829

2.3.7 stdscore Function

You can get the distance in number of standard deviations between a measurement and its expected value (this can be
with or without uncertainty) using stdscore:

stdscore(1.3 ± 0.12, 1)
=> 2.5000000000000004
stdscore(4.7 ± 0.58, 5 ± 0.01)
=> -0.5172413793103445 ± 0.017241379310344827

2.3.8 weightedmean Function

Calculate the weighted and arithmetic means of your set of measurements with weightedmean and mean respec-
tively:

weightedmean((3.1±0.32, 3.2±0.38, 3.5±0.61, 3.8±0.25))
=> 3.4665384454054498 ± 0.16812474090663868
mean((3.1±0.32, 3.2±0.38, 3.5±0.61, 3.8±0.25))
=> 3.4000000000000004 ± 0.2063673908348894

2.4 How Can I Help?

Have a look at the TODO list below and the bug list at https://github.com/giordano/Measurements.jl/issues, pick-up
a task, write great code to accomplish it and send a pull request. In addition, you can instruct more mathematical
functions to accept Measurement type arguments. Please, read the technical appendix in order to understand the
design of this package. Bug reports and wishlists are welcome as well.

2.5 TODO

• Add pretty printing: optionally print only the relevant significant digits (issue #5)

• Other suggestions welcome :-)

2.4. How Can I Help? 9

https://en.wikipedia.org/wiki/Hadamard_product_%28matrices%29
https://en.wikipedia.org/wiki/Hadamard_product_%28matrices%29
https://en.wikipedia.org/wiki/Euclidean_norm
https://github.com/giordano/Measurements.jl/issues
https://github.com/giordano/Measurements.jl/issues/5

Measurements.jl Documentation, Release 0.1.1

2.6 Appendix: Technical Details

This technical appendix explains the design of Measurements.jl package, how it propagates the uncertainties
when performing calculations, and how you can contribute by providing new methods for mathematical operations.

2.6.1 The Measurement Type

Measurement is a composite parametric type, whose parameter is the AbstractFloat subtype of the nominal
value and the uncertainty of the measurement. Measurement type itself is subtype of AbstractFloat, thus
Measurement objects can be used in any function taking AbstractFloat arguments without redefining it, and
calculation of uncertainty will be exact.

In detail, this is the definition of the type:

immutable Measurement{T<:AbstractFloat} <: AbstractFloat
val::T
err::T
tag::Float64
der::Derivatives{Tuple{T, T, Float64}, T}

end

The fields represent:

• val: the nominal value of the measurement

• err: the uncertainty, assumed to be standard deviation

• tag: a unique identifier, it is used to identify a specific measurement in the list of derivatives. This is automat-
ically created with rand. The result of mathematical operation will have this field set to NaN because it is not
relevant for non independent measurements.

• der: the list of derivates with respect to the independent variables from which the expression comes.
Derivatives is a lightweight dictionary type. The keys are the tuples (val, err, tag) of all inde-
pendent variables from which the object has been derived, while the corresponding value is the total derivative
of the object with respect to that independent variable.

As already explained in the “Usage” section, every time you use one of the constructors

Measurement(value, uncertainty)
value ± uncertainty

you define a new independent measurement. This happens because these contructors generate a new random and
(hopefully) unique tag field, that is used to distinguish between really equal objects and measurements that only by
chance share the same nominal value and uncertainty. For these reasons,

x = 24.3 ± 2.7
y = 24.3 ± 2.7

will produce two independent measurements and they will be treated as such when performing mathematical opera-
tions. In particular, you can also notice that they are not egal

x === y
=> false

If you instead intend to make y really the same thing as x you have to use assignment:

x = y = 24.3 ± 2.7
x === y
=> true

10 Chapter 2. License

http://docs.julialang.org/en/stable/manual/types/#composite-types
http://docs.julialang.org/en/stable/manual/types/#man-parametric-types
http://docs.julialang.org/en/stable/stdlib/base/#Base.is

Measurements.jl Documentation, Release 0.1.1

Thanks to how the Julia language is designed, support for complex measurements, arbitrary precision calculations and
array operations came with practically no effort during the development of the package. As explained by Steven G.
Johnson, since in Julia a lot of nonlinear functions are internally implemented in terms of elementary operations on the
real and imaginary parts it was natural to make the type subtype of Real in order to easily work with complex measure-
ments. In particular, it was then chosen to select the AbstractFloat type because some functions of complex argu-
ments (like sqrt and log) take Complex{AbstractFloat} arguments instead of generic Complex{Real},
and any operation on a Measurement{R} object, with R subtype of Real different from AbstractFloat, would
turn it into Measurement{F}, with F subtype of AbstractFloat, anyway.

2.6.2 Correlation

One must carefully take care of correlation between two measurements when propagating the uncertainty for an op-
eration. Actually, the term “correlation” may refer to different kind of dependences between two or more quantities,
what we mean by this term in Measurements.jl is explained in the “Usage” section of this manual.

Dealing with functional correlation between Measurement objects, when using functions with arity larger than one,
is an important feature of this package. This is accomplished by keeping inside each Measurement object the list of
its derivatives with respect to the independent variables from which the quantity comes, and this list is updated every
time a new mathematical operation is performed. This role is played by the der field. This dictionary is useful in
order to trace the contribution of each measurement and propagate the uncertainty in the case of functions with more
than one argument.

The use of the list of derivatives has been inspired by Python package uncertainties, but the rest of the implementation
of Measurements.jl is completely independent from that of uncertainties package, even though it may
happen to be similar.

2.6.3 Uncertainty Propagation

For a function 𝐺(𝑎, 𝑏, 𝑐, . . .) of real arguments with uncertainties 𝑎 = 𝑎̄ ± 𝜎𝑎, 𝑏 = 𝑏̄ ± 𝜎𝑏, and 𝑐 = 𝑐 ± 𝜎𝑐, ..., the
linear error propagation theory prescribes that uncertainty is propagated as follows:

𝜎2
𝐺 =

(︂
𝜕𝐺

𝜕𝑎

⃒⃒⃒⃒
𝑎=𝑎̄

𝜎𝑎

)︂2

+

(︂
𝜕𝐺

𝜕𝑏

⃒⃒⃒⃒
𝑏=𝑏̄

𝜎𝑏

)︂2

+

(︂
𝜕𝐺

𝜕𝑐

⃒⃒⃒⃒
𝑐=𝑐

𝜎𝑐

)︂2

+ · · ·

+2

(︂
𝜕𝐺

𝜕𝑎

)︂
𝑎=𝑎̄

(︂
𝜕𝐺

𝜕𝑏

)︂
𝑏=𝑏̄

𝜎𝑎𝑏 + 2

(︂
𝜕𝐺

𝜕𝑎

)︂
𝑎=𝑎̄

(︂
𝜕𝐺

𝜕𝑐

)︂
𝑐=𝑐

𝜎𝑎𝑐

+2

(︂
𝜕𝐺

𝜕𝑏

)︂
𝑏=𝑏̄

(︂
𝜕𝐺

𝜕𝑐

)︂
𝑐=𝑐

𝜎𝑏𝑐 + . . .

where the 𝜎𝑎𝑏 factors are the covariances defined as

𝜎𝑎𝑏 = E[(𝑎− E[𝑎])(𝑏− E[𝑏])]

𝐸[𝑎] is the expected value, or mean, of 𝑎. If uncertainties of the quantities 𝑎, 𝑏, 𝑐, ..., are independent and normally
distributed, the covariances are null and the above formula for uncertainty propagation simplifies to

𝜎2
𝐺 =

(︂
𝜕𝐺

𝜕𝑎

⃒⃒⃒⃒
𝑎=𝑎̄

𝜎𝑎

)︂2

+

(︂
𝜕𝐺

𝜕𝑏

⃒⃒⃒⃒
𝑏=𝑏̄

𝜎𝑏

)︂2

+

(︂
𝜕𝐺

𝜕𝑐

⃒⃒⃒⃒
𝑐=𝑐

𝜎𝑐

)︂2

+ · · ·

In general, calculating the covariances is not an easy task. The trick adopted in Measurements.jl in order to deal
with simple functional correlation is to propagate the uncertainty always using really independent variables. Thus,
dealing with functional correlation boils down to finding the set of all the independent measurements on which an
expression depends. If this set is made up of {𝑥, 𝑦, 𝑧, . . . }, it is possible to calculate the uncertainty of 𝐺(𝑎, 𝑏, 𝑐, . . .) =

2.6. Appendix: Technical Details 11

https://github.com/giordano/Measurements.jl/issues/1#issuecomment-220727553
https://en.wikipedia.org/wiki/Correlation_and_dependence
https://en.wikipedia.org/wiki/Arity
https://pythonhosted.org/uncertainties/
https://en.wikipedia.org/wiki/Propagation_of_uncertainty
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Expected_value

Measurements.jl Documentation, Release 0.1.1

𝑔(𝑥, 𝑦, 𝑧, . . .) with

𝜎2
𝐺 =

(︂
d𝑔
d𝑥

⃒⃒⃒⃒
𝑥=𝑥̄

𝜎𝑥

)︂2

+

(︃
d𝑔
d𝑦

⃒⃒⃒⃒
𝑦=𝑦

𝜎𝑦

)︃2

+

(︂
d𝑔
d𝑧

⃒⃒⃒⃒
𝑧=𝑧

𝜎𝑧

)︂2

+ · · ·

where d𝑔/d𝑥 is the total derivative of 𝑔 with respect to 𝑥, and all covariances are null. This explains the purpose
of keeping the list of derivatives with respect to independent variables in Measurement objects: by looking at the
der fields of 𝑎, 𝑏, 𝑐, ..., it is possible to determine the set of independent variables. If other types of correlation (not
functional) between 𝑥, 𝑦, 𝑧, ..., are present, they should be treated by calculating the covariances as shown above.

For a function of only one argument, 𝐺 = 𝐺(𝑎), there is no problem of correlation and the uncertainty propagation
formula in the linear approximation simply reads

𝜎𝐺 =

⃒⃒⃒⃒
𝜕𝐺

𝜕𝑎

⃒⃒⃒⃒
𝑎=𝑎̄

𝜎𝑎

even if 𝑎 is not an independent variable and comes from operations on really independent measurements.

For example, suppose you want to calculate the function 𝐺 = 𝐺(𝑎, 𝑏) of two arguments, and 𝑎 and 𝑏 are functionally
correlated, because they come from some mathematical operations on really independent variables 𝑥, 𝑦, 𝑧, say 𝑎 =
𝑎(𝑥, 𝑦), 𝑏 = 𝑏(𝑥, 𝑧). The uncertainty on 𝐺(𝑎, 𝑏) = 𝑔(𝑥, 𝑦, 𝑧) is calculated as follows:

𝜎2
𝐺 =

(︂(︂
𝜕𝐺

𝜕𝑎

𝜕𝑎

𝜕𝑥
+

𝜕𝐺

𝜕𝑏

𝜕𝑏

𝜕𝑥

)︂
𝑥=𝑥̄

𝜎𝑥

)︂2

+

(︃(︂
𝜕𝐺

𝜕𝑎

𝜕𝑎

𝜕𝑦

)︂
𝑦=𝑦

𝜎𝑦

)︃2

+

(︂(︂
𝜕𝐺

𝜕𝑏

𝜕𝑏

𝜕𝑧

)︂
𝑧=𝑧

𝜎𝑧

)︂2

What Measurements.jl really does is to calulate the derivatives like d𝑎/d𝑥 = 𝜕𝑎/𝜕𝑥 and d𝑔/d𝑥 =
(𝜕𝐺/𝜕𝑎)(𝜕𝑎/𝜕𝑥) + (𝜕𝐺/𝜕𝑏)(𝜕𝑏/𝜕𝑥), and store them in the der field of 𝑎 and 𝐺 respectively in order to be able to
perform further operations involving these quantities.

2.6.4 Defining Methods for Mathematical Operations

Measurements.jl defines new methods for mathematical operations in order to make them accept
Measurement arguments. The single most important thing to know about how to define new methods in the package
is the Measurements.result. This function, not exported because it is intended to be used only within the pack-
age, takes care of propagating the uncertainty as described in the section above. It has two methods: one for functions
with arity equal to one, and the other for any other case. This is its syntax:

result(val::Real, der::Real, a::Measurement)

for functions of one argument, and

result(val::Real, der::Tuple{Vararg{Real}},
a::Tuple{Vararg{Measurement}})

for functions of two or more arguments. The arguments are:

• val: the nominal result of the operation 𝐺(𝑎, . . .);

• der: the partial derivative 𝜕𝐺/𝜕𝑎 of a function 𝐺 = 𝐺(𝑎) with respect to the argument 𝑎 for one-argument
functions or the tuple of partial derivatives with respect to each argument in other cases;

• a: the argument(s) of 𝐺, in the same order as the corresponding derivatives in der argument.

In the case of functions with arity larger than one, der and a tuples must have the same length.

For example, for a one-argument function like cos we have

12 Chapter 2. License

Measurements.jl Documentation, Release 0.1.1

cos(a::Measurement) = result(cos(a.val), -sin(a.val), a)

Instead, the method for subtraction operation is defined as follows:

-(a::Measurement, b::Measurement) =
result(a.val - b.val, (1.0, -1.0), (a, b))

Thus, in order to support Measurement argument(s) for a new mathematical operation you have to calculate the
result of the operation, the partial derivatives of the functon with respect to all arguments and then pass this information
to Measurements.result function.

2.6. Appendix: Technical Details 13

Measurements.jl Documentation, Release 0.1.1

14 Chapter 2. License

Index

M
Measurement() (built-in function), 3
Measurements.derivative() (built-in function), 5
Measurements.gradient() (built-in function), 5

S
stdscore() (built-in function), 5

W
weightedmean() (built-in function), 5

15

	Introduction
	Features List

	License
	Installation
	Usage
	Examples
	How Can I Help?
	TODO
	Appendix: Technical Details

